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ABSTRACT

A computationally efficient scheme for multiple-source location
estimation, based on the Estimate-Maximize (EM) algoritmm [1], is presented.
The propused scheme is optimal in the sense that it converges iteratively to

tue exact maxinum Likelihoud estimate of all source location parameters

simul taneously. Versions of the algorithm that incorporate the estimation of
tue unknown ampiitude attenuations and the estimation of the unknown signal

wavefurns are also presented.
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I. INTRUDULCTION

Tue location of a radiating point-source can be determined by
vuservation of its signal at an array of spatially distributed sensors. The
optimal, Maximum Likelihood (M), estimate of the source location parameters
(i.e. bearing ana range) is achieved by maximizing the array beamformer output
LZi vr, alternatively, by cross-correlating the various sensor outputs and
obtain the ML estimates by maximizing a weighted sum of the cross-correlation
responses with respect to a pair of bearing and range parameters [3].

The presence of several signal sources drastically complicates the
estimation process. To obtain the ML estimate of all source location
paramweters jointly, we have to maximize a significantly more complicated
highly noun-linear tunction with respect to K pairs of unknown location
parameters, where K is the assumed number of signal sources. Of course, brute
furce can dalways be used to solve the problem, evaluating the objective
function on coarse grid to roughly locate the global maximum, and then
applying the Gauss method or Newton-Raphson or some other iterative
yradient-search algorithm. However, when applied to the problem in hand,
tnese methuds tend to be very complex and computationally time consuming.

Conseyuently, approximations to the ML solution and various ad hoc
schiemes four multiple source ]oga]ization have been proposed in recent
literature (e.g., [4J) - [201); however, most of the proposed suboptimal
Tucalization schemes simplify processor structure and computations at the
sacrifice of system resolution and accuracy.

In this report, we develop an iterative scheme for muliipie source
location estimation based on the Estimate-Maximize (EM) algorithm. However,
unlike the orute fource gradient-search iterative algorithms, the proposed

scheme makes an essential use of the stochastic system under consideration.




The heuristic idea is to decompose the sum of vector signals observed at the
sensor vutputs into its components, and then apply a conventional beamformer
instrumentation to each signal component to obtain the bearing and range
estimate of the corresponding source. The algorithm iterates, using the
resultiny parameter estimates to better decompose the observed data on the
next iteration cycle and thus to improve the next parameter estimates. This
computationally attractive algorithm is shown to be optimal in the sense that
it cunverges to the exact M. estimate of all source location parameters
simul taneously.

The uryanization of the report is as follows: In Section II we
re-derive the EM algorithm following the considerations in [1], and then we
specialize to the Linear-Gaussian case. In Section III we apply the algorithm

tu the multiple source location estimation.

I1. MAXIMUm LIKELIHOOD ESTIMATION AND THE ESTIMATE-MAXIMIZE ALGORITHM

Let Y be a vector random variables possessing the probability
gensity /,/4,y) &< (5 , where @ is an open subset of the K-dimensional
Euc]ideanOSpace. The ML estimate fm of 6, given an observed 4, is

ovtained by maximizing the log-1ikelihood function

Max /Uj /_y(ﬁjsﬂ - Cu (1)
vew

If the vector & contains several unknowns, such as in the multiple
source location problem, and since foj fy.@,' 2 ) 1is generally a highly
non-linear function of ¢ , the maximization required in (1) tends to be very

complex.




Suppose the data vector Y can be viewed as being “incomplete”, and we

can specify some “"complete” data Xthat is related to Y by

HiX)=Y (2)
where | (:) is a non-invertable (many-to-one) transformation, In the multiple
source location problem, the “complete" data X could be the observation of the
various source signals separately, where the "incomplete" (observed) data I is
tne suw of the signal contributions from the various sources. As pointed out
before, the Y model may be complicated to work on directly, in which case

reference tu the X model might be very useful,

For all “complete” data realizations X such that H/(x)=s v

RN
/Xr X8 ¢ (}//j)fx'fz(/)/gx-{[{)'f) (3)

whnere /X (x, #)is the probability density of X , and /X/Y-' v Q'J',E) is the
conditi;nal probability density of X given that Yr % . Taking the logarithm

on Loth sides of (3), we obtain

/05//)’/-"‘)";): fX £ - [aj/x/y:? (¥; ) (4)

Taking tne conditional expectation given Y:g‘ for a parameter value _5’

(i.e., multiplyiny both sides of (4) by fX/ ')and integrating with
respect to X over {Y//-//i) ‘:12) we obtain

Coglysiers Eflyfyrsofrsas e} o
-£{ {og /)_(/_,,; (y;0/y:9; 8¢




where we note that for a fixed ¥ , the left hand side of (5) 1s a constant and

hence it is unaffected by the conditional expectation operation. Define for

convenience

(7)

E{{o;/é//z;w/_)/-g)-_a'} 6)
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With tnese definitions, (5) reads
Cegfyl 4580 Q5 8- Py o ®
Using the Jensen's inequality, it can easily be verified that

Py e« P/_f/’_a')*). Hence

—/-

e eN> Ol 61) == &J/Y/y/.g)>f€]/r(§)._y) )

Tne relation in (Y) form the basis to the EM algorithm. The algorithm

starts with an initia) guess 6/%) and let .E(”") be defined inductively by

- ") (i)
M aix C,)(V o) = o 7:0,1,2,...  (10)

-}-

*) Tne Jensen's inequality asserts that for any two probability

densities //!) anaj/.’ Ydefined over (2

(x) ( vy dy € y ¢ Q) Ay
ng/l 033( ngg(z 0;31




Since gf"“) is the value of @ that maximizes GX¢ g/~) , then
accorainy to (9) each iteration of the algorithm increases the 1ikelihood.
Hence, under the usual regularity conditions, the algorithm converges to the
maxiwum likelihood estimate, i.€. Q’"’—» é“ . The rate of convergence of
the algorithm is exponential (see [1]), depending on the fraction of the
covariance of the “compiete” data that can be predicted using the observed
(*incomplete®) data. If that fraction is small, the rate of convergence tends
1o be slow, in which case one could use standard numerical methods to
accelerate the algorithm,

It is iwportant to observe that the EM algorithm is not uniquely
defined, The transformation H(:) relating ¥ to Y can be any
non-invertable transformation. Qbviously, there are many possible "complete”
cata specifications that will generate the observed data., Thus, the EM
alyurithm can be implemented in many possible ways. The final outcome, which
is the ML estimate, is completely unaffected by the way in which H is
specified (i.e. the choice of “"complete” data); however, the choice of H may
critically affect the complexity and rate of convergence of the algorithm, and
unfortunate choice of H may yield a completely useless algorithm. Hence,
given a parameter estimation model, the practically important question that is

left open is how to find the computationally most efficient implementation of

the algorithm,

The Linear-Gaussian Case

Suppuse that H XY, where | is & »r» matrix (<), and X possesses

the following multivariate Gaussian probability density

1
P/?U)MZ

exp (- ?'\ [1- @/ﬁﬂ%&){!'l”/ﬁ@ an

(X;8)=
/& 7 (J{f[z;”
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where d=f if ¥ is real-valued, »=2 1f ¥ is complex-valued, and the
superscript # denotes the conjugate-transpose operator.

We shall refer to

this case as the Linear-Gaussian case. Taking the logarithm of (11), we

obtain

(o5 f (5910 = § og et [ZRe] - 3] y- 0001010 [x- (0]

2= Slogdet [2pr)] - 2 BIR (9) 72 (5)

(12)
e/ -/ -t
+ S YR ey e Sl Ry - L in[R0XX]
where tri J stands for the trace of the bracketed matrix, Substituting {12)
into (6), we obtain
_— ) 0% \Ov 1
C?(P, §') = - f/og/tt [i-’p/g)]- SmigRPI w(e)
- ) A - o\
+ 28* ey + S WIDIROY =2 Hn [RIDX Y] (13)
N
were ¥z EfX/HX:4, 6'3 Lana XYY eE{Yx/H¥: 956}
Using well-known results from linear estimation ([23], Chapter 4), we obtain
A
X= 2706+ [/ 9-Hmw (5] (14)
A\ A A
X¥* = [I-Pe')HIRIEDN+ X X" (15)
where [ (€)is the “Kalman Gain" defined by
w . e-!
[re)= RISYH [HRIEIH*] (16)
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Substituting (14) and (15) fnto (13), the function ?(g‘lf’)required for
the EM algorithm is given in a closed form. We note that ?(s’,ﬁ’)
and paj/x /_:/'g)have the same dependence on # . Maximizing Q/g, ¢’) with

respect to £ is the same as maximizing /pj/x f2;¢) with respect to ¢ .
Hence, the EM algorithm requires the M. solution in the _Xmode] which might be
significantly easier to obtain than the direct M solution in the YmodeL

1f R(¢)= R a constant matrix, 9/_@‘, ©') assumes the simplified form

1

A -/ - -
Gle o) = ale')+ z:‘[g'& 708 )+ 7_27"/_;)2’_,\9 - )y?g)p wie)]  an

wiere a(g’') accounts for all terms that are independent of #. Substituting
(17) into (10), the Estimate (conditional expection) step and Meximize step of
the alyorithm are given by:

E-step: Compute

2(,/,-.): 77 (817) /'l/f/r))[igo H»Z?_’/f’”’)] (18)

M-step:

. -1
Max [ 1778 ‘r18)s m10OR ¥7.
4

II11. ARRAY PRKOCESSING VIA THE EM ALGORITHM

The basic system of interest consists of K spatially distributed signal
sources and an array of b spatially distributea sensors as illustrated in
Figure 1. Assuming perfect propogation conditions in the medium between

sources anu receivers, the actual waveform observed at the mth sensor output
is given by
K
T () = é2’ Xhw SE(E-T4p )+ Moy (t) (20)
v/

e ————




where S4/¢) is the k*P source signal, 77,.(1)is the additive noise, Tz,,, is
the travel time of the signal wavefront from the kth source to the mth
sensor, and a(lm are the amplitude attenuations,

Inforuation concerning the various source location parameters can be
extracted by measuring the various 7, . 1In the passive case, one can only
measure the travel time differences, obtainable by selecting one sensor as a
reference ana comparing its output with that of every other sensor. I1f we let

senso' A to be the reference and set 1, -0 , then 7, _ measures the travel

time difference of the Kt signal wavefront to the (», A ) sensor pair.

To simplify the exposition, suppose that the various signal sources are
relatively far-field so that the observed signal wavefronts are essentially

planar across the array. If we further suppose that the array sensors are

co-linear, thnen

[ d{;y (03 ¥4 (21)

where 4,. is the spacing between sensors? and M, < is the velocity of
proupogation in the medium, and s’; is the angle of incident of the kth signal
wavetront with respect to the array baseline,

In this setting, the estimation problem can be stated as follows: Given
the ouservea data { Y, (&)} ", find the M estimate of ¥, ¥r, ... Y
We shall fing it convenient to work with the parameters &4 = (vd ¥4

Since M estimation commutes over non-linear transformation, we can first

estimate the 54 and then translate to the ¥y

Assuning that the S4&/¢) are perfectly known to the observer, and
that the %7,, /t) are realizations from uncorrelated zero-mean spectrally

white Gaussian processes, the log-1ikelihood function is given by

M Ts %
1 2
/Oj // ly,¢) = c -mz-; W f[y"‘ v .52,'(‘»7 Sk (t-Yne 64)]"d1 (22)
J ” “ |

—E




where Vi z dm /c , M. is the spectral level of 7,,/t), [T.,7s ) is the
ooservation interval, and ( is a normalizing constant., The result in (22) is
a straightforward multi-channel extension of the known (deterministic) signal

in white Gaussian noise problem ([24], Chapter 4). Thus, the M estimate is

the solution to the following problem:

T

Mﬁx{z ,'[/i I[‘L/i) Id;,,,:;/f ﬁé)]/t '—>€ (23)

mr/
H" k T,

Pl
fa
v,

Ignoring terms that are independent of &, (23) reduces to

4
Max { 2 W [2'5"% /vwf\ff/f-);.b’é)/t
") 1 T‘
& .6 . 6,

7, - K

K K
- IE 4 . R/{wfgf (£=Yon 64150 (1= 1oy 5/)/;‘]} ——77”‘ (24)
£=1 (21

T,

In many situations of practical interest, the number of signal sources
is also an unknown parameter to be estimated, in which case several criteria
to determine K, based on the ML estimate of the £4'J , are presented in
({204 - l2¢4). Thus, to obtain the ML estimate of the &4’2 jointly with the

estimate of the number of signal sources, we have to solve a non-linear
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optimization problem in K unknowns, for which a closed form analytical
solution cannot be found.
We further note that the optimization problem stated above assumes prior

knowleage of the oz,,’3 and S¢/¢)’3. In practice, this is apt to be

unrealistic. One is unlikely to have exact prior knowledge of the amplitude
attenuations and detailed description of the signal waveshapes may be
similarly incomplete, in which case to obtain the M. estimate of the ¢4 4
we must waximize the expression in (24) with respect to all the unknowns 1n
the problemn. The effect of unknown attenuation factors can be eliminated from
the likelihoud equation by observing that for pre-specified & '3 , (23)
pecones @ weighted linear least squares problem in the ’(lm” , for which there
is a clused form solution. Thus, we can substitute the «},.’3 by their
weighted least squares estimates and obtain a somewhat more complicated
functional to be maximized with respect to the remaining unknowns. HKowever,

the effect of unknown signal waveshapes cannot be eliminated that easily and

hence, the required maximation becomes exceedingly more complicated.
Having the EM method in mind, we would like to simplify the maximization
associated with the direct ML approach. To apply the algorithm to the problem

in hand, the first step is to specify the “complete" data. A natural choice

of the “complete” data is given by decomposing the observed signals “/a (¢)into
Xew (1) 2 Ky, S4 (¢ -Thom) + Mg (1) (25)

where the 7’/1”,/:\ are chosen to be realizations from uncorrelated zero-mean

white Gaussian processes with spectral levels of Afém‘ NM//”. 1f we require

that
K

2 My, (¢) £ Vs 1) (26)

é:)




-1] -
then
K
D Xp (8) = Yy (8D (27)
4=
Cuncatenating the M equations in a vector form, we obtain
K
2 Xe(4) = Y1t) (28)
£z
where
- .
Xy l8) s (0, (8 Xgo 8 o0 Xpo (D) (29
and
Yrers (Y1) Yo Yui®)) T (30)

Equation (28) can be rewritten in the form

H-Xit): 4ip) 31)
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where

T v
Yty (X0 2/‘7/1‘).. . g;m) (32)
andu
= 25 SV
H=[I1: 1]

—
K tenws

(33)

where I is the Mxam identity matrix. We denote X /f) the “complete” data,
and Yrt)the "incomplete” (observed) data. Note that X/t}is composed of the K

components ¥4 1¢) €ci,2,... K , where ¥./t)is the vector signals received

th

from t.ie K source alone,

(onsiager, for the moment, M. estimation using the "complete" data.
Since the cumponents of Y/{)are uncorrelated Gaussian random processes, the
loy-likelihova of X/¢) is the sum over £ and » of the log-1ikelihood of

the )([W 1t) which, in turn, is given by

T¢

Ep
(ogfyrre): Q- EZ 7 S[Xn’*)"”iw S le-imon)) et Gw
T,

Suppose that the §;/¢) are known a-priori so that we “only” have to
. . . k .
estimate the K sets { e;l ,(‘U,/‘ 2, ---’Qu]f.—; . The maximization of (24)
with respect to all unknowns is & rather complex maximization problem. The
maximization of (34), however, is a much simpler problem. This is since the

expression in (34) can be decomposed into

K
/a;/! ¥ 8) = 2’ log /X; (¥¢5 94 (35)




e —
- 13 -
where
Ts
(o/ (¥s:64)= G '§ 2 {[th ft)- «’tmﬂ/f')’m"lﬂ:"f (36)
2{(‘ T é mz Mm

Tne expression in (36) depends only on 6'}) 0’1,} ’{lz ) o ee ,(‘M
Hence, the maximization of (34) with respect to the K-set unknowns can be

decomposea into the K separate maximizations

»r

M Ts 2
Mox {- 2 F [ [Yomt0- o St te-Tr0a )it | =
. ;
y‘}“")“‘l,.../lu

M / Ts
— —_— 2« ty fd- -
= M mwa“ Wi [ mT‘f)qm ) (t-Vn 8 A ¢ (37

64 & ' 2 s
£, Kb, 84s,-.- 04, - o{,. j_{"/{-};‘.ﬁ‘{)lt]
T,

The maximization in (37) is, in fact, the maximization problem
assuciateg with the M estimation of the bearing parameter of a single source
in the presence of unknown amplitude attenuations,

The E¥ algorithm is directed at finding a value of the parameters that
maximize (24), however, it does so by making an essential use of the solution
to (37).

Since the “complete” data is Gaussian, and the transformation
relating 2( /4) to ij /¢) 1is linear, we can use the version of the
alyurithin developed for the Linear-Gaussian case. Thus, the M-step of the
algorithm is given by (34) (since g)/!, g) and [0-7/)( {)fj e )

assumes the same form), where the components of X /f) are substituted by

XY™ F[X/f)/HX/*)-' Y, §3 (38)
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The conditional expectation required in (38) can easily be obtained

using (1b). The resulting algorithm is given by:

E-step
Cuiipute
Xy e o () / 6,1%)
£ - ‘m S‘ f. )Pw £
K
* Bpe [92 11 '{Z Kyry Sy [t Fon £77)] (39)
M-step
For ‘é:/‘;)..- K
M y 7}
Max »mZ: W [24... (Y;,’:’/u:; (Vo 04) A1
TS T,
. 7 | o
- O/‘w ff"/{‘,; £é )/f] —_— % , p(‘/‘”;'“_ a(/:",,) (40)
T

Perhaps the must stricking feature of the algorithm has already been
indicatea before. The algorithm decouples the complex multiple-parameter

maximization associated with the direct M. procedure into K separate M

maximizations as illustrated in Figure 2. The extension to bearing and range

estimation is straightforward. The basic scheme is still illustrated by
Figure 2, where now each ML processor requires the maximization with respect
to a pair of bearing and rarge parameters. Thus, the complexity of the
algorithm is completely unaffected by the number of signal sources. As the
number of sources increases, we have to increase the number of M processors

in parallel; however, each processor jis maximized separately.
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Since the algorithm is based on the EM method, it must converge to the
exact ML estimate of all source location parameters simultaneously.

We note, in passing, that according to (26), the fu,” must satisfy the

constraint

2 Bhnr = 1 (41)

but otherwise they are free variables. The choice of p‘ﬂ” does not affect the
final estimate (at the point of convergence); however, it can be used to
control the rate of convergence of the algoritim,

We now consider the M-step of the algorithm in more details. If we set

the aerivative of the expression in (40) equals to zero, we obtain

Ts
. / NS (Vo Ok ) AL
—;

6(2 =

w1

(42)

- we) A
7,

Since the second derivatives with respect to the xQ,” is a negative
aefinite matrix, we have therefore expressed the optimal choice of the &, as
a function of &4 . Substituting (42) into (40) and following straightforward
algebra manipulations, the M-step of the algorithm reduces to |

[ T} , )2
M / | )/‘”:‘)/{) ;‘ /f‘ )’;” 5;/»4/))411
MAY 2 T - T¢ % Qé(m” “3

L /
g " M.ﬂ%,s"/z-ﬁ..n)//t

T¢
2 SN 50 e g0
‘m = _?}
f‘l/f° ’/:” ‘}/Hil))/t

(44)

7,

N IIIIENNNNSIN——————
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In most situations of practical interest, we can assume that

j 51'/1 SV CL) AL is independent of & , in which case the above pair

£ of equatiuns reduces to

M 4 [ T3 2
e i -1 (nr1) 45)
/46;: 2 v ‘f)q,,mr;/t Vo 2] =5 47 5
- / YUt Sh (Ve 647777) 4
°/£ = (46)
»m

/jé ) Ao
7
Te
The term fy _’:/f) SL[¢-T)A! can be generated by passing ){‘ '(¢)

- through a fﬂter matched to §% ). Thus, ﬁ" is obtained by maximizing

a squarea anu weighted sum of a bank match filter outputs.

Modified EM Algoritim

The Ev theory allows us to substitute the M-step of the algorithm

(Equation (40)) by the following two-step maximization:

T
May £ [zoz ’J "5k -y 04 ) At
7 r T
- /é/v‘t /(‘ ?/{_),;” e )/{] —_ 62('”) 47
1
Moy Z- —‘—'; 4o f}(z [F) 5[ /f }“ 1/"”))

M

0(6'/ '/l:) ‘{é

f
- 4. [f//f-i; 7 ’”"’)/{] = 44w
T |
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Ts
Assuming, as before, that f};’/y-y;,pl)a& is independent of &4, (47)
ana (48) reauce to T
M ’( t»m) 7}
. Max 2 k= J)@’"‘/t).q (t- Vo ) AE = /" o)
T W ) g
bk T

Ts
ST J X st v 08 ™) 2
K f s i

7 (50)
T~/ ) At

We note that the solution to (49) is obtained by maximizing a weighted
linear sum of a bank match filter outputs.

Tne waximization of (47) followed by the maximization of (48) is
generally not equivalent to the maximization required in (40). However, since
the condition in (Y) is still satisfied, each iteration increases the
likelihooa, and the modified algorithm converges to the desired results. By
replacing (43) by (49) , we therefore simplify processor
structure ano computations in the expense of possibly very moderate decrease
in the rate of converyence of the algorithm,

Another alternative is to maximize the expression in (40) first with
respect to the azvn (using ey"’) and then with respect to #, . The M-step of

the algorithm, in that case, is given by

s (51)

75
VR
T.

Ts
o, T Yol 1) 14 [t Vin 641 )2
£
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T¢

M (ni)

™

Ma)/ Z -——-—N Jyélvﬂ/{) f‘ /i_'f;" 0‘ )/{f N 67‘/"1/) (52)
S mE % w

b%

s ¢

We note that (49) followed by (50) is not the same as (51) followed by
(5¢). However, for the same reason, both algorithms converge to the desired

ML solution.

Unknuwn Signal kaveforms

The algorithm and its modified version developed in the previous
sections critically depends on exact prior knowledge of the 5‘ (t). In
practice, one is unlikely to have detailed prior knowledge of the signal
waveforms , in which case they must be estimated jointly with the &4 and
the o/, . Following the same considerations as in the known signal case,

the resulting algorithm is given by

E-step
Compute
Yol 1) s S e P )
K )
-r/flm[‘jmli)-f// f’"/;‘ '] (53)
<
. h-step
For é=1,2,.._ K

Max Z 7. [2'/5.“{)/[ /m/t)f; (t-Va 6L )AE

mry
Cs, Sett), a/,,,.../;,, Te

we1) (3L wei 2T
- /[,.,,, {fl (¢- Yo Bk )/f]"'# f S‘//f’ (’, )) a(/ ‘ (54)
T.

S
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Again, the EM algorithm converts the extremely complicated maximization
problem associated with the direct M. procedure into K separate maximizations
as suggested by Figure 2. Each maximization is, in fact, the maximization
problen associated with the M estimation of the bearing parameter of a single
source of unknown waveshape in the presence of unknown amplitude attenuations.

Ignoring end-effects, the expression in (54) to be maximized can be

written in the form

T
Y vim
/‘/z b Y e ) SE L) - Ao sE'0)) ) 42 (55)
me/ /Vlwr ) ”

To find a function J§z/¢) that maximizes the integral given in (55), it
is sufficient to find J (¢) that maximizes the integrand. If we set the
derivative of the integrand with respect to Sz +¢) equals to zero, we obtain

after some obvious manipulations

M
Sg ()= (56)

z ¥4
,‘”Z__, ‘/lm/ylm

Since the second derivative of the integrand with respect to Si/4) is
negative, we have found the optimal choice of S4/f), expressed in terms of the
remaining unknowns in the problem. Substituting (56) into (54), the required

maximization can be carried out as following:
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-
Fbm Lic o " £
Max ; 2/2' Y S)(;,,ﬁ (Vo 86 ) Ys /" 1Y 86) fo/;f.a/mm}

T, m
b?[/ ‘,‘/1 Tt '/‘M
_—_____% an-u) oL (v foor)
b, %k, Ky, (57)
5 Vel g o
frve) , " £ €1V Al
S¢ ) e —22 P ~ ) W (58)
Z ") W e

We note that at convergence, equation (58) yields the ML estimate of
the Sy (¢) as well. This information is of considerable interest in many
applications.

The waximization required in (57) is still rather complicated. However,
the modified EM approach can be used to further simplify the computations by
maximizing (o4) first with respect to 6y, then with respect to 5//¢), and

finally with respect to the .//M . The M-step of the algorithm, in that case,
takes the form:

Ts

jyﬁm/ﬁ) b’;)X‘, /-/¢)(H)/1 -sw-’”'” (59)

M M (v? f+)\

May 22 o Ybe

wer [ ”‘m N‘(

&4 T
rn1) Z ‘/IM yé {*}P p/.-m)/'%m
St rt)= — (60)
S (i,

5
e W5 e 0 1

f{’ 2" )15 A
T"

p(bfwil\ -

(61)
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In this setting we only have to perform & one-parameter maximization at

each iteration cycle. The expression in (59), to be maximized, can be

rewritten in the form:

’ ' v > 7?
:;_- { S el /y,,, e DOV (eaYs 00 ) AE
wr t:1 Néw Nt 7 135 -~ ¥4 V4
L PR
/ ' - () 2
= J [ Z%— Xﬁm/ﬁfmﬂ)j At
Tl mE) ‘m
!/ M v
-"”)/»Z, 7 Xl € "] e (62)

w
where X[M/w) is the Fourier transform of X,  /t) and W is the signal
frequency band, The expression in (62) is the array beamformer, implemented
in either tne time or the frequency aomain., Thus, the M-step of the algorithm
essentially consists of maximizing K beamformers in parallel as illustrated in
Figure 5.

Alternatives to the M-step can be obtained by changing the order of
maximizations. For example, we can apply the various algorithms derived for
the knuwn siynal case, where Sf (t) is substituted by its current
estimate _-’""/t) , and then use (60) to update the estimate of Sg (t), The
various olyurithms may have slightly different convergence properties;
however, a1l of which converge to the exact ML estimate of all source location

parameters simultaneously.
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COMMENTS

1) The extension of the algorithms to bearing and range estimation and
arbitrary (put known) array configurations is straightforward. 2) The
derivation of the algorithms for the case in which the S5f(+<) are modelled
as sample functions from uncorrelated zero-mean Gaussian random processes is
presented in (25]. 3) In the assumed model, we have ignored the phase shifts
caused by scattering and reflection phenomena. These effects can be taken
intu account by considering the g”q(t) in (20) to be the complex envelope of

the receivea signals, in which case the &y,, are complex-valued (magnitude

and phase) auwplitude attenuations. The extension of the algorithms to the
complex case is straightforward (note that the Linear-Gaussian case has been
developed for complex processes as well). 4) The proposed scheme can be

extended to time delay and location estimation in multipath environment.
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FIGURE CAPTIONS

Figure 1 Array-Source Geome try

Figure 2 Multiple Source Localization via the EM Algorithm

Figure 3 Localization of Multiple Sources Having Unknown

Wavef orms
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